Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 374(1): 16-23, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32245884

RESUMO

Methamphetamine (METH) continues to be among the most addictive and abused drugs in the United States. Unfortunately, there are currently no Food and Drug Administration-approved pharmacological treatments for METH-use disorder. We have previously explored the use of adeno-associated viral (AAV)-mediated gene transfer of an anti-METH monoclonal antibody. Here, we advance our approach by generating a novel anti-METH single-chain variable fragment (scFv)-Fc fusion construct (termed 7F9-Fc) packaged into AAV serotype 8 vector (called AAV-scFv-Fc) and tested in vivo and ex vivo. A range of doses [1 × 1010, 1 × 1011, and 1 × 1012 vector copies (vcs)/mouse] were administered to mice, eliciting a dose-dependent expression of 7F9-Fc in serum with peak circulating concentrations of 48, 1785, and 3831 µg/ml, respectively. Expressed 7F9-Fc exhibited high-affinity METH binding, IC50 = 17 nM. Between days 21 and 35 after vector administration, at both 1 × 1011 vc/mouse and 1 × 1012 vc/mouse doses, the AAV-7F9-Fc gene therapy significantly decreased the potency of METH in locomotor assays. On day 116 post-AAV administration, mice expressing 7F9-Fc sequestered over 2.5 times more METH in the serum than vehicle-treated mice, and METH concentrations in the brain were reduced by 1.2 times the value for vehicle mice. These data suggest that an AAV-delivered anti-METH Fc fusion antibody could be used to persistently reduce concentrations of METH in the central nervous system. SIGNIFICANCE STATEMENT: In this manuscript, we describe the testing of a novel antimethamphetamine (METH) single-chain variable fragment-Fc fusion protein delivered in mice using gene therapy. The results suggest that the gene therapy delivery system can lead to the production of significant antibody concentrations that mitigate METH's psychostimulant effects in mice over an extended time period.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/terapia , Fusão Gênica Artificial , Estimulantes do Sistema Nervoso Central/farmacologia , Terapia Genética/métodos , Fragmentos Fc das Imunoglobulinas/genética , Metanfetamina/farmacologia , Anticorpos de Cadeia Única/genética , Transtornos Relacionados ao Uso de Anfetaminas/genética , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Animais , Dependovirus/genética , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C
2.
J Thromb Haemost ; 18(7): 1586-1597, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32196903

RESUMO

BACKGROUND: Prophylactic replacement therapy in hemophilia A (HA) patients does not adequately prevent bleeds and arthropathic complications. A more refined understanding of the relationship between coagulation factor VIII (FVIII) levels and bleeding risk during protein prophylaxis, or with gene therapy, is needed to improve patient care. OBJECTIVES: Investigate this relationship in the HA rat, a model exhibiting spontaneous bleeds and development of arthropathy similar to HA patients. METHODS: Human B domain-deleted FVIII was delivered to HA rats via adeno-associated virus (AAV)-mediated gene transfer or multiple intravenous protein injections. RESULTS AND CONCLUSIONS: After 12 weeks of observation, both approaches significantly reduced bleeds per animal and increased the proportion of bleed-free animals compared with controls (43% vs 0%, respectively [AAV]; 75% vs 8%, respectively [injection]). Both approaches resulted in an anti-FVIII inhibitory response in 20% to 37% of treated animals, similar to HA patients. Inhibitory antibodies were refractory to clinical improvement (reduction of bleeds) only in the AAV-based prophylaxis. An integrated model-based analysis of data on FVIII exposure and bleeding events was performed. This predicted the bleeding risk at any given circulating FVIII activity. Specifically, 4.8 or 10 IU/dL FVIII (0.048 and 0.1 IU/mL, respectively) were predicted to reduce bleeding risk by 90% or 95%, respectively, compared with untreated controls. Our data establish the utility of the HA rat model in FVIII prophylaxis studies and describe how FVIII activity affects bleeding risk in this setting. These enable further studies on FVIII prophylaxis focusing on disease complications for an optimized treatment of HA patients.


Assuntos
Hemofilia A , Hemostáticos , Animais , Fator VIII/genética , Terapia Genética , Hemofilia A/genética , Hemofilia A/terapia , Hemorragia/prevenção & controle , Humanos , Ratos
3.
Haemophilia ; 26(1): 164-172, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31797491

RESUMO

INTRODUCTION: Monitoring of clinical effectiveness of bypassing agents in haemophilia patients is hampered by the lack of validated laboratory assays. Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) have been evaluated for predicting clinical effectiveness of bypassing agents, however, with limited success. AIM: Application of a longitudinal model-based approach may allow for a quantitative characterization of the link between ROTEM parameters and the probability of bleeding events. METHODS: We analyse longitudinal data from haemophilia A rats receiving gene-based FVIIa prophylaxis in terms of total circulatory levels of FVII/FVIIa, clotting time (CT) measured using ROTEM and the probability of bleeding events. RESULTS: Using population pharmacokinetic-pharmacodynamic (PKPD) modelling, a PK-CT-repeated time-to-event (RTTE) model was developed composed of three submodels (a) a FVII/FVIIa PK model, (b) a PK-CT model describing the relationship between predicted FVIIa expression and CT and (c) a RTTE model describing the probability of bleeding events as a function of CT. The developed PK-CT-RTTE model accurately described the vector dose-dependent plasma concentration-time profile of total FVII/FVIIa and the exposure-response relationship between AAV-derived FVIIa expression and CT. Importantly, the developed model accurately described the occurrence of bleeding events over time in a quantitative manner, revealing a linear relationship between predicted change from baseline CT and the probability of bleeding events. CONCLUSION: Using PK-CT-RTTE modelling, we demonstrated that ROTEM parameters can accurately predict the probability of bleeding events in a translational animal model of haemophilia A.


Assuntos
Fator VII/genética , Hemofilia A/genética , Hemofilia A/prevenção & controle , Hemorragia/diagnóstico , Probabilidade , Rotação , Tromboelastografia , Pesquisa Translacional Biomédica , Animais , Modelos Animais de Doenças , Fator VII/farmacocinética , Hemofilia A/sangue , Ratos , Tempo de Coagulação do Sangue Total
4.
Blood Adv ; 3(3): 301-311, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30705032

RESUMO

A sizable proportion of hemophilia inhibitor patients fails immune tolerance induction and requires bypass agents for long-term bleed management. Recombinant human-activated coagulation Factor VII (rhFVIIa) is an on-demand bypass hemostatic agent for bleeds in hemophilia inhibitor patients. Prophylactic use of rhFVIIa may enable sustained hemostatic management of inhibitor patients, but the critical relationship of rhFVIIa circulating levels and clinical outcome in that setting remains unclear. To address this in vivo, we used the rat hemophilia A (HA) model that exhibits spontaneous bleeds and allows longitudinal studies with sufficient statistical power. We simulated activated Factor VII (FVIIa) prophylaxis by adeno-associated virus (AAV) gene transfer of a rat FVIIa transgene. Compared with naive HA animals, rat FVIIa continuous expression affected the overall observed bleeds, which were resolved with on-demand administration of recombinant rat FVIIa. Specifically, although 91% of naive animals exhibited bleeds, this was reduced to 83% and 33% in animals expressing less than 708 ng/mL (<14 nM) and at least 708 ng/mL (≥14 nM) rat FVIIa, respectively. No bleeds occurred in animals expressing higher than 1250 ng/mL (>25 nM). Rat FVIIa expression of at least 708 ng/mL was also sufficient to normalize the blood loss after a tail vein injury. Continuous, AAV-mediated rat FVIIa transgene expression had no apparent adverse effects in the hemostatic system of HA rats. This work establishes for the first time a dose dependency and threshold of circulating FVIIa antigen levels for reduction or complete elimination of bleeds in a setting of FVIIa-based HA prophylaxis.


Assuntos
Fator VIIa/genética , Terapia Genética/métodos , Hemofilia A/genética , Hemofilia A/terapia , Animais , Coagulação Sanguínea/genética , Dependovirus/genética , Fator VIIa/biossíntese , Fator VIIa/isolamento & purificação , Células HEK293 , Hemofilia A/sangue , Humanos , Fenótipo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...